Experimental design

1. Sample size
Describe how sample size was determined.

For label density variation SMLM, the necessary sample sizes (number of analyzed cells) were based on Baumgart F et al, Nat Meth (2012), where limits and statistical requirements of the method were extensively assessed. Otherwise, sample sizes were chosen in agreement with the observed variabilities in the samples.

2. Data exclusions
Describe any data exclusions.
No data was excluded from the analysis.

3. Replication
Describe whether the experimental findings were reliably reproduced.

All attempts at replication were successful.

4. Randomization
Describe how samples/organisms/participants were allocated into experimental groups.

Allocating samples into experimental groups was not applicable since primary T cells from one mouse strain were used. No specific method for randomization was used.

5. Blinding
Describe whether the investigators were blinded to group allocation during data collection and/or analysis.

Allocating samples into experimental groups was not applicable. Blinding was therefore not relevant to this study.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6. Statistical parameters
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the Methods section if additional space is needed).

<table>
<thead>
<tr>
<th>n/a</th>
<th>Confirmed</th>
</tr>
</thead>
<tbody>
<tr>
<td>❌</td>
<td>The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)</td>
</tr>
<tr>
<td>✅</td>
<td>A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample was measured repeatedly</td>
</tr>
<tr>
<td>✅</td>
<td>A statement indicating how many times each experiment was replicated</td>
</tr>
<tr>
<td>✅</td>
<td>The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more complex techniques should be described in the Methods section)</td>
</tr>
<tr>
<td>❌</td>
<td>A description of any assumptions or corrections, such as an adjustment for multiple comparisons</td>
</tr>
<tr>
<td>✔️</td>
<td>The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted</td>
</tr>
<tr>
<td>❌</td>
<td>A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)</td>
</tr>
<tr>
<td>❌</td>
<td>Clearly defined error bars</td>
</tr>
</tbody>
</table>

See the web collection on statistics for biologists for further resources and guidance.
Software

7. Software

Describe the software used to analyze the data in this study.

The ImageJ plug-in ThunderStorm was used to fit single molecule signals and construct SMLM localization maps. In-house developed code implemented in Matlab was used to analyze label density variation SMLM data (see Baumgart et al 2017 Nat Meth) and STED microscopy data (available upon request).

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for providing algorithms and software for publication provides further information on this topic.

Materials and reagents

8. Materials availability

Indicate whether there are restrictions on availability of unique materials or if these materials are only available for distribution by a for-profit company.

All unique materials used (single chain fragments, DNA constructs) are readily available from the authors upon request.

9. Antibodies

Describe the antibodies used and how they were validated for use in the system under study (i.e. assay and species).

TCRβ-specific antibody H57-597 (Biolegend; CatNo. 109218; LotNo. B206104; 0.05, 1, 5 and 10 μg/ml); CD3ε-specific antibody KT3 (AbD Serotec/Bio-Rad Technologies; CatNo. MA1-80783; LotNo. 1603; 0.02, 0.2, 2, 10 and 20 μg/ml)

10. Eukaryotic cell lines

a. State the source of each eukaryotic cell line used.

No eukaryotic cell lines were used.

b. Describe the method of cell line authentication used.

No eukaryotic cell lines were used.

c. Report whether the cell lines were tested for mycoplasma contamination.

No eukaryotic cell lines were used.

d. If any of the cell lines used are listed in the database of commonly misidentified cell lines maintained by ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used.

Animals and human research participants

11. Description of research animals

Provide details on animals and/or animal-derived materials used in the study.

Primary murine T cells were isolated from Sc.c7 transgenic C57BL/6 male and female mice at age 8-12 weeks.

12. Description of human research participants

Describe the covariate-relevant population characteristics of the human research participants.

The study did not involve human research participants.